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Abstract. or

A-1
The formation of a plastic zone, in the form of a linear array of inclined edge

dislocations in front of a mode I crack in plane strain, is studied. The direction

of the force field on an edge dislocation due to the crack load allows for the

determination of the plastic zone as a function of the inclination angl&. The

dislocation distribution along the plastic zone is found from force equihibdum

considerations. The results show the presence of a dislocation frce zone (DFZ)

and a shrinking of the plastic zone size with greater angle of inclination. lii ltter

angle does not seem to influence the DFZ size. The way in which we detemined

the stress field allows us to study the influence of defects on the plastic aom Z

formation.
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Introduction.

Electron microscope studies have revealed that crack propagation involves a com-

bination of modes.(".2 3.. 5) In thin areas, where the state of stress is predominantly

that of plane stress, the crack propagates as a mode Ill-crack and emits screw

dislocations in a plane coplanar with the crack. In thicker areas the crack behaves

as a mode I-crack, and either it blunts by emitting edge dislocations on planes

450 to 90 ° inclined to the crack plane or propagates suddenly in a zig-zag fashion.

The distribution of dislocations in the plastic zone coplanar to the crack was first

treated theoretically by Bilby, Cottrell and Swinden (BCS).( The pile-up of scre

dislocations in front of the mode III crack was later studied by Majumdar and

Burns,(7) and Chang and Ohr.(S) These latter studies included the presence of a

dislocation-free zone (DFZ). Chang and Ohr also studied the inclined pile-up of

screw dislocations, without DFZ(9).

Experimental observations on the plastic zones, ahead of the crack tips, in rel

materials are substantially different in that the plastic zones are spread on two

thin leaves attached to each of the crack tips. Here we idealize this by comideing

one or two symmetric lines of distributed dislocations that are inclined to the

crack line. We consider only the pile-up of edge dislocations for the mode I-rmak.

Our approach is quite different from previous ones in that it searches for the

possibility of existence of a plastic zone in the form of a linear army of edge

dislocations with a certain angle of inclination. In this way the size of the DFZ

Introduction. 3
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and the plastic zone and its position arrise naturally from the calculations. We

have also determined the exact form of the dislocation distribution. The analysis

is based on a linear isotropic elastic material.

Plane Strain Solution.

In order to find the force field on an edge dislocation due to a crack and other

defects it is necessary to determine the stress field. For our study the geura form

of the stress field, arising from an arbitrary symmetrically loaded crack in plane

strain, is needed. This problem can be split up into a symmetric mode I problem

and an anti-synmetric mode II problem.

The Boundary Conditions (B.C.) of the symmetric mode I problem are:

oxylyj0 = 0 (I)

ayylcrak = - p(x) (2)

Uyloutside crack 0 (3)

p(x) p( - x) (4)

0..

Plane Strain Solution. 4
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where a0 ,k (k,l = x,y) denote the stress tensor, (u, uy) the displacement vector

and p(x) is the traction applied to the crack surface.

The stress field for this problem is given by (Sneddon (10) p 26):

0,a(x, y) = c (y' - I)I()e -4y cos(x)dt (5)

O)(Xy) =- " (y + l)v/()e-4Ycos(tx)dt (6)

ayx(x, y) = - E 10 ,(I)e- sin(}x)d (7)

Y,2 (x, y) = V(o + O(Y) (8)

where

= 'Ff'f(t)J,(rt)dt (9)

f(t) 2t p(u)du (10)

F Here J, (z) denotes the Bessel's function of the first kind of order n.

The B.C. of the antisymmetric mode II problem are:

O Iy = 0 (11)

* Oxylcrack = - q(x) (12)

Plane Strain Solution. S
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Uxloutside crack = 0 (13)

q(x) = -q(-x) (14)

where q(x) is the shear stress applied to the crack surface.

The solution of this problem is:

a~( y -Z '0 ( y - 2) (15))

oY>..',Y) = -l- co )d' (16)

X).(x, y) = n 5o ( y - l)rA( )e -'Y sin(Ix)d (17)

oz.(X, y) = v(Oc, + ayy) (18)

where

0Z

, / S f(t)J,( t)dt (19)
2i

2 = uq(u)du
f 0t so 2 - 2

These solutions involve quite tedious triple integrations. By expanding p(x) and

q(x) in Fourier series, we managed to reduce the triple integrations to ine ones,

resulting in the following solution:

Plane Strain Solution. 6
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Symnmetric mode 1:

p(x) p, pcos(nitx) (21)
n0

Ckl I a 1  y) (k, I x, y) (22)
n- 0

where

n~x y tJ,(nnrt)[yh(x, y, t) - f(x, y, t)Idt (23)

" (,y) = '5t10(nitt)[f(x, y, t) + yh(x, y, t)]dt (24)
yy 0

cxy = y LJ0(nnt)j(x, y, t)dt (25)

Antisynuneric mode IL:

q(x) Y, qn sini(nytx) + %x(26)
n-S

oki = cy q I~(x, Y) (k, 1I x, y) (27)
n-0

where

a X )= fgn(t)[yh*(x, yt) - y,'t)]dt (28)

a" /X, y) = J'gn(t)h*(x, y, t)dt (29)

a oY(X, y) f gn(t)[yh,(X, y, t) -f 0(x, y, t)Jdt (30)

Plane Strain Solution. 7



S

gn(t) = UJI(nnt) n > 1 (31)

g0 ) = t i2 (32)

The term qox in (26) is to account for a non zero shear stress at the crack tip.

The functions f(x,y, ), h(x,y, ), j(x,y, t), .'(x,y, t), h (x,y, t), f(x,y, t) and

hs (x, y, t) are collected in the appendix.

Along the crack line a great deal of simplifications are achieved:

S)mmetric mode I

n (,O)= x tJO(nnt)dt
FX~X, f)= ,S -2-/ (33)

(x -t32

on(X, 0) = o(x , 0 (34)

Y on (x, 0) = 0 (35)

Antisyrmnetric mode II

n (x, 0) 0 (36)

0FX (36)

ay o(x, 0) 0 (37)

OCx ) jO tf~t)dt (9

(x - t2 2

P

Plane Strain Solution.
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where

gn(t) = J (nnt) n 1 (39)

go(t) = t2 /2 (40)

Hence we have the solution of a rather general problem in a form attractive to

computations. The generality will allow us later on to take into account the

influence of any kind of in-plane defects on the plastic zone size and position.

Method of approach.

Experimental observations indicate that from the crack tip emanate one or two

sets of edge dislocations making an average angle J_ a with the crack line. At first

we look at the case of just one set of dislocations. We idealize this picture by

assuming that the edge dislocations constitute two straight lines (fig 1).

We can distinguish four kinds of forces on any of these dislocations:

1. The force F, due to the crack load.

--9 --9

F ¢(t) = b(t) F 0 (t) (41)

* Method of approach. 9



where b(t) is the Burger's vector density at t,

F0(t) Y [ayt)cosa) + cc (t)sin(a)] 1

(42)

- o(t) cos(a) + acy(t) sin(a)] - }

oCt(t) (k,l = x,%) is the stress field at t due to the crack load and t is a local

coordinate along the plastic zone (t E [0, L]), fig 1.

2. Thc force 1.d due to the other dislocations.

Fdt) =b(t) K1(t, )b()dr (43)

where

KI(t) 2nI - v)(t - r) e t (44)

Here i is the shear modulus and v is Poisson's ratio.

3. The force Fed due to the interaction of the dislocations with the crack.

C

F cd(t) = b(t) b(r) K 2 (t, r)d (45)

where

Method of approach. 10
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cyt ( ot, cos(a) + a tr sinca)] e2(t, X YY x

* (46)

-[OcXd(t, ;)cos(a) + Goxd(t, ') sin(a)]7ey}

C4.

Oyk1(t, ') is the stress field at t due to the interaction of the crack with a unit

delta-Dirac dislocation density at ~.~and t are local coordinate-z along the plastic

zone (t, 3 E [0, L]).

4. The force Ff due to friction in the glide plane of the dislocation.

F-t f4t e(7

where cf is of the order of

cf 10- 4 p a 10-21 (48)

The equilibrium configuration of the system requires that:

FC +Fd +Fe~d+ F f 0 (49)

or

F0 (t) + S, I (t,) + K2(t,]b)d -ee 0 (50)

At first we neglect the interaction forces. Hence we have.:9

F 0 (t) + K I (t, )b(,")d, - cf Ct =0 (51)

*Method of approach. I1I
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Due to the chosen configuration the forces between the dislocations Fd are parallel

to their line of position, i.e. they have the same angle of inclination. Indeed,

substituting (44) in (51) one obtains:

F0(t) e K,(t,r)b(')d' -c = 0 (52)

where

Kj(t, ) =IK,(t, r)l (53)

Hence, in order to obtain equilibrium the forces due to the crack load must also

have an inclination angle a (a necessary condition). From this we deduce the

following approach to the solution of our problem:

1. We choose an angle a.

2. We determine the force field F 0 due to the crack load on an edge dislocation

with this angle of inclination.

3. In this for., field we look for a straight line with inclination angle a, of forces

having this same inclination angle. This gives us the size and position of the plastic

zone.

4. Knowing the force field along this line, we can calculate the edge dislocation

distribution (Burger's vector) which will generate a force field with the opposte

sign (force equilibrium). This requires the solution of the following integral equation:

L
oK(t,)b(r)dr = -f(t) (54)

sod0

where

Method of approach. 12
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f(t) = Fo(t) - cf (55)

Fo(t) = IF o(t)l (56)

5. The interaction forces between crack and dislocations can be treated by iteration.

Let the solution of (54) be b0(t). The dislocation density b(t), after one iteration

is given by the solution of

"- 4 oL  --# L  '- 4 ' , ; d f '

F0 (t) + K I (t, r)b,(")dr + K2(t, )bo()dr - cf 1 = 0 (57)
0 0

The iterated location of the plastic zone is determined by the force field e

FI(t) = Fo(t) + J, K2(t, ,,)bo(.)d, (S8)
0

and the density bl(t) is the solution of

'K (t.r)b (-)dr -fl(t) (59)

00

where

fl(t) =1V1I - cf (60)

In case of two symmetrically located dislocation lines (fig 2) we have to introduce

some additional forces.

5. The force Fcds due to the interaction of the symmetrically located dislocations

with the crack.

Method of approach. 13 .1
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F~d5 (t) =b(t jb(') K 3 01 )d" 61

where

*K t,) {ad(t)cos(a) + C t i~)

(62)

-[oad(t. , cos(a) + cds(t, r) sin(a)J e;

0 ok'f'(1, ') is the stress field at t due to the interaction of the crack with a unit

delta-Dirac dislocation density at is symmetrically located with respect to C:

if t rcorresponds to the rectangular coordinate (x,y) then corresponds to (x,-y).

6. The force Fd, due to the symmetrically located dislocations.

F dS(t) =b(t) J b(") K 4 (t, r)dr (63)

where

(t, r) {a Ic~,~sta + (t, sin(cz)] ix
(64)

*cy - (t, )cos(a) + Yt ) sin(c)] Cy}

,,d'(1, )is the stress field at t due to a unit delta-Dirac dislocation dens4t at

Now equilibrium requires:

F C+ Fd + Fod+ Fr+ Fcds+Fd O (65)

Method of approach. 14



We again only retain F~, Fd and Ff. Iteration is now based on the solution of

F(t) +o [. [ 2(t, r) + K30t, + 4 4t )0 (~d +

(66)

+ fj K (tr,)bl(r)d' + cf-e-# = 0

Due to the sigificance of the correction forces, iteration is more important in the

synunctnc case.

The dislocation distribution.

The determination of the edge dislocation distribution corresponding to the cal-

culated force field amounts to the solution of the following Cauchy intepal equa-

tion for b(x):

L b(x)jidx
* ~~n~ -v(x-) f(y) (67)

or

L up(x)dx (8
S f(y) (8

where

The dislocation distribution,.i



Ib(x)
qP(x) = 2n(1 - v) (69)

The solution of (68) which is zero at L is given by IMikhin (13) p 130:

2 /[( f(t)dL - f0t)d1 (70)

t e[O, L] (71)

The first integral is a Cauchy integral whose singularity can be removed as folows:

we write the integral as one centered about the singularity and the rest: for t '

Li2 we gct:

l=J'o i- f(,)d.

S1/(72)

+ U)] I 2ptU)A

S' [(t - u)(L - t + _l ;~ + u)t fC;d4

Then we subtract the constant contribution of the numerator of the firt integal

which removes the singularity. In this way we obtain:

for t L/2:

S= S', {[(t - u)(L - t + u)l'f(t - u) - [t(L - t)]'mf(t) --'

L [;J(L - 4)11/2 (73)

. "
+ t f )d,

for t > L/2: a

The dislocation distribution. 16



40 (74)

+ JL '{[(t -u)(L - t + u)]'1 2f(t - u) - [t(L - t)]1' 2f(t)} dui

O

* Results and discussion.

0

We ran the computer program for a = 450, 55, 60, 70* and 80". These angles

were chosen because experimentally edge dislocation emission happened mainly

in a direction within 45' to 900 angles with the crack plane.
S

Figures 3 to 7 give a detailed overview of our scheme for one crack line with a

- 600. Crack length and load were taken unity. Figure 3 represents the force field
S

due to the crack load on an edge dislocation with angle 600. Figure 4 displays the

line along which the forces are inclined over 60*. The plastic zone is given by that

portion of the line that has a line of inclination of 60"(fig 5) to within a tolerance

of 4°. The force f(t) along the (normalized) plastic zone is given by fig 6. Fmalily

fig 7 shows us the edge dislocation distribution along the plastic zone. We we

that the method gives us the plastic zone and DFZ in a natural way.

The effects of subsequent iterations on the plastic zone location are represented

in fig 8. It is clear that in the case of only one dislocation line iteration doeui not

influence the results appreciably.

Results and discussion. 17
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Fig 9 points out to the influence of the friction on the dislocation density. As

long as the friction force does not exceed the minimum force density along the

0 dislocation line, the extent of the plastic zone is not affected.

We also ran the program for different angles, the results of which are displayed

in fig 10. We notice that the size of the DFZ is not really dependent on the angle

of inclination, while the plastic zone size clearly is. There is a general trend for

the plastic zone to get shorter with greater angles. The forces along the plastic

zone and the dislocation distribution increase slightly with larger angles.

The situation for the two symmetric dislocation zones is different. Fig 11 makes

Cit clear that iteration is quite important. The forces neglected in the zeroth iteration

are indeed significant. Fig 12 displays an overview for several angles of inclination.

We see that the dislocation zones are slightly smaller than the case of a single

0 dislocation line.

Summary

In this article we studied the existence of a plastic zone consisting of edge dislo-

cations around a mode I crack. The analysis showed a decreasing plastic zone Miz

for an increasing angle of inclination. The presence of a DFZ emerged as a nattual

product of the calculations. The present method can be applied to mode II
0

Summary 13
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problems and the interaction of the crack with material defects. The influence of

the generation of Helium bubbles on size and location of the plastic zone will be

discussed in a subsequent paper.
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Appendix
0

We can express ftx,y', t), h(x,y, t), j(x,y, t), f(x,y, t), h*(xy, t), h(x,y, t) and

f(x,y, t) as a function of 3 other functions H1 (p), H2(p, q) and H3(x,y, t):

f(x, y,t) = - IH(y) (75)

h(x,y,t) = H2(y,y) (76)

j(x,y,t) = H2(x,y) (77)

f(x, y,t) = - H1(t) (78)

* Appendix 19
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h (x,y,,t) =H 2 (y,t) (79)

hs(x,y,t) = H2(X,t) (80)

*fs(x,y,t) =H 3(xly,t) (81)

where

HI~) gl- 12 +921)l,'2ig -3I2g +ggP9 glpg2l 2 (82)

H - ~~1 -132-12+ p2pl lp 2 g1

C H2(p,q) + 9 - 2 1i- 2 g]3 gggll

x 9- 32 giq +92 - g2 g l-2 + 2 1 (1p 112 +92 1  )- 1t7
4<2 2\2

X{ _Lg3 1p - (~pg I- - glpg2q)gzi
2 

+

3-2 +g(2pqg g1 g2gq-qg2

49g1  glqglp -(2gl - gp22lg

p,q =x,y* or t

H3(Xly~t = - -2x(g 3 ty + &4ty)12+

(93 + 9 4)(93 + g4)2 - 4x 2f

2X(3 + 94) [ (gy + 94y)((9 3 + 94) 2 - 4X212+ (4

(9 4) ((93 + 94

+ (% + g4)2((3Y + &4Y)((93 + 94) 2 
-4

2) /2]

*Appendix 20



in which:

= (y2 + t2 2)2 + 4x2y2  (85)

92 = Y2 + t22 (86)

= [Y' + (t+ 1)2] (87)

g= [YI + (X t)2]' (9 )

The subscripts x, y, t, p and q represent partial derivatives with respect to x, y, t,

p, and q.

Appendix 21
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